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Abstract. We construct the spectral function of the Luther–Emery model which describes one-
dimensional fermions with gapless charge and gapped spin degrees of freedom. We find a
true singularity with interaction dependent exponents on the gapped spin dispersion and a finite
maximum depending on the magnitude of the spin gap on a shifted charge dispersion. We
apply these results to photoemission experiments on charge density wave systems and discuss
the spectral properties of a one-dimensional Mott insulator.

Non-Fermi liquid behaviour in correlated fermion systems is an exciting topic of current
research. One-dimensional (1D) metals are a paradigmatic example of non-Fermi liquids:
their low-energy excitations are not quasi-particles but rather collective charge and spin
density fluctuations which each obey their proper dynamics [1]. The key features of these
‘Luttinger liquids’ [2] clearly show up in the single-particle spectral function

ρ(q, ω) = −π−1 Im G(kF + q, µ + ω) (1)

which can be measured in photoemission: (i) absence of fermionic quasi-particles, (ii)
anomalous dimensions of operators producing correlation functions with non-universal
power laws, (iii) charge–spin separation [3]. (In equation (1),G is the electronic Green
function, kF the Fermi wave number, andµ the chemical potential.) Responsible for this
are the electron–electron interaction, which is marginal in one dimension and therefore
transfers nonvanishing momentum in scattering processes at all energy scales, and the
nesting properties of the 1D Fermi surface. They produce 2kF charge and spin density
fluctuations which then interfere with Cooper-type superconducting fluctuations.

In a Luttinger liquid, both the charge and the spin excitations are gapless. One-
dimensional Peierls or Mott insulators or superconductors are, however, characterized by
one gapless and one gapped degree of freedom. The model describing this situation,

H = H
(ρ)

0 + H
(σ)

0 + H1⊥ (2)

H
(ν)

0 = 1

2π

∑
ν=ρ,σ

∫
dx

{
vνKν π252

ν(x) + vν

Kν

(
∂8ν(x)

∂x

)2
}

(3)

H1⊥ = 2g1⊥
(2πα)2

∫
dx cos

[√
88σ(x)

]
(4)

has been solved by Luther and Emery [4]. Here,H0 describes harmonic charge (ν = ρ)
and spin (ν = σ ) density fluctuations through the bosonic phase fields8ν(x) and their
canonically conjugate momenta5ν(x). Their dispersions are gaplessων(q) = vν |q| with
velocities vν , and H0 contains, in addition, stiffness constantsKν . The backscattering
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HamiltonianH1⊥ is, for Kσ − 1 small enough compared to|g1⊥|, a relevant perturbation
and opens a gap1σ in the spin excitation spectrum (else, (2) reduces to a Luttinger liquid).
The umklappHamiltonian for a half-filled band is obtained by simply replacing spin by
charge in equation (4). Luther and Emery have shown that for the special valueKσ = 1/2,
the interaction Hamiltonian (4) can be represented as a bilinear in spinless fermions, and
diagonalized. The resulting spectrumεσ (q) = ±√

v2
σ q2 + 12

σ shows a gap1σ at the Fermi
level. Systems in these classes would be dominated by singlet superconducting (SS) [5] or
charge density wave (CDW) correlations [6, 7] or be 1D Mott insulators [8, 9]—problems of
high experimental and theoretical interest. We concentrate on the spin-gap problem because
it is more generic: here all values ofKρ are physically sensible (giving SS forKρ > 1 and
CDW for Kρ < 1) while spin-rotation invariance enforcesKσ = 1 for the Mott problem.

There is a fairly complete picture of the properties of Luttinger liquids [1], but much
less is known for systems with both gapless and gapped degrees of freedom. There is a
general belief that the opening of a gap affects the system for frequencies smaller than this
gap while the behaviour of the ungapped system is essentially recovered at larger frequency
scales. Moreover, several methods [10] support the idea that correlations of the8σ -field
tend towards a non-zero constant as|x| or |t | → ∞ while those involving exponentials of
its dual field

∫
dx 5σ (x) decay exponentially in space (or oscillate in time) which would cut

off (shift) the divergences as functions ofq (ω) they had possessed in the Luttinger model.
Possibly important power-law prefactors to exponentials have not been discussed. There
has been almost no calculation or systematic construction of such functions—in particular
dynamical ones—due to the absence of any practical relation between the physical fermions
and the spinless pseudofermions emerging from the Luther–Emery solution [11] and, to my
knowledge, no critical check of these hypotheses by numerical work. It is the purpose of
this letter to discuss the spectral function of a model with gapless and gapped degrees of
freedom and to comment on recent photoemission experiments on quasi-1D CDW systems
where this model could be relevant.

Here, I construct the single-particle spectral functionρ(q, ω), equation (1), for the
Luther–Emery model. Other correlation functions may be obtained along the same lines.
The charge–spin separation manifest in the Hamiltonian (2) allows us to representG(xt)

as a product of certain charge and spin correlation functionsgν(x, t) = 〈9(ν)
rx (xt)9

(ν)†
rs (00)〉

where the notation9(ν) indicates that only theν-part of the boson representation of9 is
to be taken, andρ(q, ω) as a convolution of their Fourier transforms. The charge part is
simply calculated in the Luttinger model [3].

The determination of the spin correlation function is more involved because it has no
simple representation in terms of the Luther–Emery pseudofermions,excluding any exact
calculation. I now show that the leading behaviour of this function can, however, be
uniquely constructed from symmetries, equivalences, and known limits. The important steps
are the following. (i) Representing the Hamiltonian in terms of right- and left-moving
fermions requiresgσ to be a function ofx ± vσ t only. In general,gσ will contain both
power laws (f±) and exponentials (fexp) of these variables

gσ (xt) ∼ f+(x − vσ t)f−(x + vσ t)fexp(x ± vσ t). (5)

(ii) For vanishing gap,gσ must reduce to the correct Luttinger form. This requires
fexp(x ± vσ t; 1σ = 0) ≡ 1 and determines all possible power laws up to corrections
O(1σ ) in the exponents, or terms varying more slowly than a power law. (iii) From
the equivalence of the Luther–Emery model to a classical 2D Coulomb gas, and Debye
screening of the charges above the Kosterlitz–Thouless temperature∝ exp(−1σ |r|) [12],
one deduces an exponential factor exp(−c1σ

√
x2/v2

σ − t2), with an undetermined constant
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c, in fexp. (iv) Exponential terms with the same (or slower) decay but different dependences
on x ± vσ t can be excluded by imposinggσ (x, t) = g?

σ (−x, −t) derived from translational
invariance. (v) Guĺacsi has calculated explicitly thet = 0 Green function of a 1D Mott
insulator [13]: his calculation excludes the possible corrections to the power laws of O(1σ )

mentioned in (ii) and therefore fixes the power-law contributionsf± to be just of the usual
Luttinger form. Moreover, exponential decay faster than determined in (iii) is excluded,
too, and the open constantc = 1 is determined. I thus find

gσ (x, t) ∼ exp

(
−1σ

√
x2 − v2

σ t2/vσ

) /√
α + i(vσ t − x). (6)

Fourier transformation then gives

gσ (q, ω) ∼ (
1 + vσ q√

v2
σ q2 + 12

σ

)2(ω + vσ q)√
ω + vσ q

δ

(
ω −

√
v2

σ q2 + 12
σ

)
. (7)

This result can then be convoluted with the charge part.

Figure 1. Spectral function of the Luther–Emery model forq > 0. The thick dashed line
at ερ(q) gives the Luttinger liquid divergence which is supressed here. The inset shows the
dispersion of the twoω > 0 features.

What could we expect from our knowledge of the Luttinger liquid [3]? There the
singularities atω = vρ(σ)q arise from processes where the charge (spin) contributes all of
the electron’s momentumq and the spin (charge) none. The same argument applied to the
Luther–Emery model predicts signals at the renormalized spin dispersionεσ (q) and at a
shifted charge dispersionερ(q) = vρq +1σ (inset in figure 1). The result of the calculation
is shown schematically in figure 1 forq > 0 and the (realistic) casevρ > vσ . There are
indeed features at these frequencies. Atεσ (q), there is a true singularity [ω − εσ (q)]α−1/2

as in the Luttinger model (however, hereα is definedas α = (Kρ + K−1
ρ − 2)/4 since

the notion of aKσ does not make sense). Folklore would then predict another singularity
|ω − ερ(q)|(α−1)/2 (dashed lines in figure 1) which isnot observed here. It is cut off instead
to a finite maximum of order1(α−1)/2

σ : as in the 1D quantum antiferromagnet, the opening
of the spin gap cuts off the singularity of the prefactor of the delta function in (7) asq → 0,
and the convolution makes this effect apparent on the charge dispersionερ(q). The spin
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gap therefore supresses the divergence associated with the charge dispersion, while on the
renormalized spin dispersion the spectral response remains singular.

At negative frequencies, the Luther–Emery model has pronounced shadow bands. Here,
the Luttinger liquid only has very small weight. The weight in the Luther–Emery model
is much stronger, and the spectral function has the same overall shape as at positive
frequencies. Forq > 0, the positive frequency part is enhanced by a coherence factor
1 + vσ q/εσ (q) while a factor 1− vσ q/εσ (q) decreases its shadow. These factors translate
the increased coherence due to the spin pairing and the finite spin gap.

Can we expect structured spectral functions forα larger than 1/2 or 1? The present
construction, which amounts to determining the leading behaviour and does not fulfill
sum rules, does not allow a definite answer. Experience with the Luttinger model shows,
however, that, once all sum rules are enforced, when the exponents increase so as to change
a divergence into a cusp singularity the prefactor changes sign so as to turn upward the
cusps [14]. Such a crossover, keeping peaky structures also for largeα, is natural and is
expected to occur in the present problem, too.

Notice finally that the behaviour ofρ(q, ω ≈ ±1σ) is determined by that of the spin part
close to1σ and the charge part atω ≈ 0. Unlike earlier conjectures [10], it is thereforenot
necessary to know details of the charge dynamics on a scaleω ≈ 1σ where the Luttinger
description may have acquired significant corrrections.

The k-integrated density of states then isN(ω) ∼ 2(ω − |1σ |)(ω − |1σ |)α. There is
no weight below the gap, and the typical gap singularity in the density of states of the spin
fluctuations is wiped out by the gapless charges.

It is quite clear now that certain properties of 1D fermions—the dynamical ones
involving (1+1)D Fourier transforms—are affected by the gap opening onall energy scales,
contrary to common expectation, while those depending on one variable alone are modified
only on scales below the gap energy. Despite this, singular spectral response remains
possible inq- andω-dependent correlation functions.

The spectral function of a 1D Mott insulator can be computed as a special case of
the generic solution presented above (σ ↔ ρ everywhere andKσ = 1 for spin-rotation
invariance). Then

ρ(q, ω) ∝ 2
(
ω −

√
v2

ρq
2 + 12

ρ

)/√
ω −

√
v2

ρq
2 + 12

ρ

andN(ω) ∼ 2(ω−ερ) times a regular function here. The spectral properties of a doped Mott
insulator, of course, depend on the detailed scenario emerging from a more complete theory.
Work on the Hubbard model shows, however, that the upper Hubbard band qualitatively
survives a finite dopant concentration [9, 13]. Continuity then suggests that as the Mott
transition is approached by varying the band-filling spectral weight is gradually taken out
of both the charge and spin divergences of the Luttinger liquid parts of the spectral function
to reappear in the Luther–Emery function possessing only a charge divergence, although
the transition leaves the spins unaffected and opens only a charge gap. When superposing
(to a first approximation) the two signals, care must be taken, however, to account for the
dependence of the chemical potential on doping level.

A wide variety of models fall into the Luther–Emery universality class and the present
results should be applicable there in a low-energy sector: Luttinger liquids coupled to
phonons and related models, so long as they are incommensurate, have wide regions of
parameter space with gapped spin fluctuations [5]; the negative-U Hubbard model at any
band-filling has a spin gap [15], the positive-U Hubbard model at half-filling has a charge
gap [8, 9], spin gaps occur frequently in models of two coupled Luttinger or Hubbard chains
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[16, 17] etc. Some numerical studies have attempted to calculate spectral properties [9, 17].
While consistent with the present work on the existence of shadow bands, their resolution
is not good enough to probe the finer structures computed here.

A more microscopic calculation of spectral functions for the 1D Mott insulator has
recently been performed by Sorella and Parola (SP) based on the 1Dt–J model [18], and
confirms the essential aspects of the present work. Specifically, it supports the present work
in (i) the suppression of the signal living on the shifted charge (spin) dispersion when a spin
(charge) gap opens, but the possibility of a finite maximum remaining is not discussed (as
pointed out above, neither do we find such a maximum forKρ(σ) = 1 in the gapless channel,
the case studied by SP); (ii) a true singularity associated with a branch cut inG(k, ω) is
found on the spin (charge) dispersion. The momentum-dependent correlation exponents
found by SP are, however, beyond the scope and possibilities of the present model. On the
other hand, it is not clear how their results reduce to a Luttinger spectrum when1 → 0
wheremomentum-independentexponents are expected [18].

Importantly, our results could prove useful in the description of the photoemission
properties of certain quasi-1D materials. There is now a considerable number of such
experiments on quasi-1D conductors in their ‘normal’ metallic state (above low-temperature
phase transitions) [6, 7, 19]. Usually, they measure the density of statesN(ω), which
universally shows an absence of spectral weight at the Fermi edge, and a gradual increase
with energy only over a considerable fraction of the conduction band width, these two
features being essentially temperature independent. This behaviour is formally consistent
with the Luttinger liquid picture, predictingN(ω) ∝ |ω|α with some interaction-dependent
exponentα > 0. More strikingly even, an angle-resolved photoemission experiment on
K0.3MoO3 showstwo dispersing peaks [19]. While some materials, such as the Bechgaard
salts, may well fall into this universality class [20], it is particularly surprising that CDW
systems such as the blue bronze K0.3MoO3 or (TaSe4)2I should behave similarly. In
fact, the photoemission properties are in striking contrast to the established picture of a
fluctuating Peierls insulator [21]. It predicts a strongly temperature-dependent, narrow
(|ω| 6 1CDW(T = 0)) pseudogap andρ(q > 0, ω) is governed by a broadened quasi-
particle peak atω > 0 and a weak shadow atω < 0.

A Luttinger liquid interpretation for the CDW photoemission is highly suggestive but
encounters problems which are all resolved in a Luther–Emery framework. (i) Luttinger
liquids have no dominant 2kF -CDW correlations: for repulsive interactions (Kρ < 1) spin
density waves are logarithmically stronger than CDWs, and for attractive interactions the
system is dominated by superconductivity [1]. A spin gap is a necessary condition for
dominant CDW correlations in 1D and realized in the Luther–Emery model! (ii) 2kF -CDWs
often are due to electron–phonon coupling, and renormalization group provides us with a
detailed scenario [1, 5]. The dependence of the spin gap on electron–phonon couplingλ, the
phonon frequencyωD andKρ can be calculated reliably [5]. A spin gap also opens if CDWs
are caused by Coulomb interaction between chains [22]. (iii) The spin susceptibility of CDW
systems above the Peierls temperature decreases with decreasing temperature indicative of
activated spin fluctuations. Remarkably, in K0.3MoO3 the conductivity is metallic in the
same temperature range. (iv) For a Luttinger model, the stronger divergence inρ(q, ω)

is associated with the charge mode. For repulsive interactionsvρ > vσ , while in the
experiment on K0.3MoO3 the quickly dispersing signal is less peaked than the slow one. On
the other hand, the important feature of the Luther–Emery spectral function, figure 1, is that
the spin gap supresses the divergence of the charge signal which disperses more quickly
than the divergent spin contribution. (v) A CDW transition out of a Luther–Emery liquid
by opening a charge gap at the Peierls temperature is also consistent with subtle transfers of
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spectral weight in regionsaway from the Fermi energy, observed in spectra taken through
the true CDW transition [23]. The Luther–Emery spectral function is consistent with the
experiments and this model therefore might be a natural starting point for a description of
the low-energy physics of CDW materials such as K0.3MoO3.

Obviously, this suggestion is somewhat speculative and independent support is called
for. Its virtue is that it comes to grips with the puzzle that the spin susceptibility of
K0.3MoO3 decreases with decreasing temperature while the conductivity is metallic, that
it leaves space for the good description of optical properties as a fluctuating Peierls
insulator (they only probe the charge fluctuations which will form CDW precursors at
temperatures much below the spin gap opening, presumably as a consequence of emerging
3D coherence) and that it provides an (admittedly phenomenological) description of the
photoemission properties of this material with extremely 1Delectronicproperties [24]. As
in the Bechgaard salts [20], a single-particle exponentα ∼ 1 would be required, implying
strong long-range electron–electron interactions, and there is at best preliminary support
from transport measurements for such strong correlations in K0.3MoO3. Retarded electron–
phonon coupling could increaseα over its purely electronic value [5]. To what extent this
mechanism contributes can be gauged from the measuredα which must be larger than the
one derived from the enhancement ofvρ over the band velocity (alas strongly depending
on the accuracy of band structure calculations). In the perspective of the present work,
high-resolution photoemission studies on the organic conductor TTF-TCNQ are desirable
because there is independent evidence both for strong electronic correlations and electron–
phonon coupling, and a crossover between regimes dominated by one or the other seems to
take place as the temperature is varied.

I wish to acknowledge fruitful discussions with J W Allen, W Brenig, R Claessen, M Grioni,
M Gulácsi, G-H Gweon, D Malterre and J-P Pouget. I am supported by DFG under SFB
279-B4 and as a Heisenberg fellow.
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